
A GENERALIZED KARAMATA INEQUALITY

ETHAN Y. JAFFE

1. Karamata’s inequality

In this note we prove a generalized version of Karamata’s inequality, and give an example
of an application of the classical inequality to functional analysis.

First, some notation.
If z ∈ Rn, write z↓ ∈ Rn for the vector which has the same components as z, but written in

non-increasing order. For x, y ∈ Rn, we say that “y weakly majorizes x” if for all 1 ≤ k ≤ n

k∑
i=1

x↓i ≤
k∑
i=1

y↓i ,

and write x 4 y. If in addition
∑n

i=1 xi =
∑n

i=1 yi, then we say “y strongly majorizes x”
and write x ≺ y. Observe that the condition x 4 y is equivalent to the following condition:
for any 1 ≤ ` ≤ n, if i1, . . . , i`, j1, . . . , j` are indices of the ` largest elements of x and y,
respectively, then ∑̀

p=1

xip ≤
∑̀
p=1

yip .

For y ∈ Rn, denote C(y) = {z ∈ Rn : z↓ ≺ y↓}.
Let the permutation group Sn act on Rn via

σ · x = xσ = (xσ(1), . . . , xσ(n)),

for σ ∈ Sn and x ∈ Rn. If A ⊆ Rn, let Con(A) denote its convex hull. If x, y ∈ Rn then we
write x ≤ y if xi ≤ yi for all i.

Theorem 1.1 (Generalized Karamata’s inequality). Suppose K ⊆ Rn is convex and invari-
ant under the action of Sn. Let Φ : K → R be convex and symmetric. Fix x, y ∈ K. Then,
if x ≺ y,

Φ(x) ≤ Φ(y).

If we assume further that Φ is non-decreasing in the sense that u ≤ v implies Φ(u) ≤ Φ(v),
then if x 4 y,

Φ(x) ≤ Φ(y).

.

Remark 1.2. The classical Karamata’s inequality is the special case that C = Rn and Φ(z) :=∑n
i=1 ϕ(zi) for some (nondecreasing) convex function ϕ of one real variable.

The proof will examine the convexity properties of the set C(y). The theorem will follow
quickly from the following proposition:
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Proposition 1.3. For y ∈ Rn, C(y) is convex and compact, and invariant under the action
of Sn. The set of extreme points1 of C(y) is precisely the set

{yσ : σ ∈ Sn}.

We now prove the generalized Karamata’s inequality, given proposition 1.3.

Proof of theorem 1.1. Since y ∈ K and K is invariant under the Sn action,

{yσ : σ ∈ Sn} ⊆ K,

and thus by convexity
Con({yσ : σ ∈ Sn}) ⊆ K.

By the Krein-Milman theorem2 and proposition 1.3, C(y) is the convex hull of its extreme
points, i.e.

C(y) = Con({yσ : σ ∈ Sn}) ⊆ K.

Thus C(y) ∩K = C(y). Assume first that x ≺ y. Then

x ∈ C(y) ∩K = C(y) = Con({yσ : σ ∈ Sn}),
and so x is a convex combination of the points yσ, i.e. for each σ ∈ Sn there exists 0 ≤ tσ ≤ 1
with

∑
σ∈Sn

tσ = 1 and

x =
∑
σ∈Sn

tσy
σ.

Since Φ is convex and symmetric,

Φ(x) ≤
∑
σ∈Sn

tσΦ(yσ) = Φ(y),

which is what we wanted to prove.
Assume now that x 4 y and that Φ is non-decreasing. Since Φ is symmetric, we may

suppose that x = x↓ and y = y↓.The proof will be complete if we can show:

Lemma. There exists z ∈ C(y) = C(y) ∩K such that x ≤ z.

For if this is true, then Φ(x) ≤ Φ(z) since Φ is non-decreasing, and Φ(z) ≤ Φ(y) by the
first part of the theorem since z ≺ y by definition.

Proof of lemma. We use induction on n. If n = 1, then x 4 y is equivalent to x ≤ y, so the
lemma holds trivially. We prove the lemma for n, assuming it holds true for n − 1. Write
x′, y′ ∈ Rn−1 for the vectors obtained by deleting the last coordinate of x, y, respectively.
By assumption, x′↓ = x′, y′↓ = y′, and x′ 4 y′. By induction there is

z′ ∈ C(y′)

such that x′ ≤ z′. As we showed above,

C(y′) = Con({y′τ : τ ∈ Sn−1},

1Recall that an extreme point e of a convex set K is one which lies on no proper line segment in K, i.e.
if e = (1− t)p+ tq for p, q ∈ K and t ∈ (0, 1), then p = q = e.

2See theorem A.1 for proof. Notice that we are working in finite dimensions, and so we do not need to
take the closure of the convex hull, although this would not really affect the proof, anyway.
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and so there is for each τ ∈ Sn−1, a 0 ≤ tτ ≤ 1 such that
∑

τ∈Sn−1
tτ = 1 and

x′ ≤ z′ =
∑

τ∈Sn−1

tτy
′τ .

Extend τ to Sn by letting by setting τ(n) = n, and define z :=
∑

τ∈Sn−1
tτy

τ ∈ C(y). Then
zn = yn. If xn ≤ yn, then it follows from x′ ≤ z′ that x ≤ z, and we are done. Otherwise,
xn > yn. Let us consider

t =
z1 + · · ·+ zn − (x1 + · · ·+ xn)

z1 + · · ·+ zn−1 − (x1 + · · ·+ xn−1)
.

Notice that the denominator is nonzero. Indeed, if it were not, then since zi − xi ≥ 0 for
1 ≤ i ≤ n− 1 by assumption, zi − xi = 0 for all 1 ≤ i ≤ n− 1, and hence

x1 + · · ·+ xn−1 + xn = z1 + · · ·+ zn−1 + xn = y1 + · · ·+ yn−1 + xn > y1 + · · ·+ yn−1 + yn,

which contradicts x 4 y. The numerator is non-negative, since

x1 + · · ·+ xn ≤ y1 + · · ·+ yn−1 + yn = z1 + · · ·+ zn−1 + zn.

However, since zn − xn < 0 by assumption, the numerator is at most the denominator. We
deduce that 0 ≤ t ≤ 1. Consider w ∈ Rn−1 defined by

wi =

{
xi + (zi − xi)t, 1 ≤ i ≤ n− 1

xn, i = n.

Since 0 ≤ t ≤ 1, x ≤ w. Furthermore, for 1 ≤ ` ≤ n− 1, suppose i1, . . . , i` are the indices of
the `-largest elements of wi. Then we may assume that no ij is n, since wn = xn ≤ xi ≤ wi
for all i < n. Thus, since 0 ≤ t ≤ 1,∑̀

j=1

wij =
∑̀
j=1

xij + t(zij − xij) ≤
∑̀
j=1

zij ≤
∑̀
j=1

z↓j ≤
∑̀
j=1

yj,

with the last inequality holding since z′ ∈ C(y′). But by definition of t,
n∑
j=1

wj = (x1 + · · ·+xn) + t(z1 + · · ·+ zn−1− (x1 + · · ·+xn−1)) = z1 + · · ·+ zn = y1 + · · ·+ yn.

These last two statements taken together mean that w ∈ C(y). Thus we have found x ≤
w ∈ C(y). �

�

Proof of proposition 1.3. Write C = C(y). Without loss of generality, we may assume that
y = y↓. Then C is by definition invariant under the Sn action. To show convexity, suppose
u, v ∈ C. Fix 0 ≤ t ≤ 1, and suppose i1, . . . , ik are the indices of the k-largest elements of
z = (1− t)u+ tv. Then

k∑
j=1

zij ≤ (1− t)
k∑
j=1

uij + t
k∑
j=1

vij ≤ (1− t)
k∑
j=1

u↓j + t

k∑
j=1

v↓j ≤
k∑
j=1

yj.

By the same reasoning,
∑n

j=1 zj =
∑n

j=1 yj. Thus z ∈ C.
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The set C is certainly closed, so to show compactness, it suffices to find uniform bounds of
the form a ≤ zi ≤ A for all z ∈ C and 1 ≤ i ≤ n. Fix z ∈ C, and without loss of generality
assume z = z↓ (the uniform bounds are invariant under permutation). Certianly zi ≤ z1 ≤ y1

for all 1 ≤ i ≤ n, so y1 is an upper bound. However, zi ≥ zn =
∑n−1

i=1 yi − zi + yn ≥ yn, for
all 1 ≤ i ≤ n, so yn is a lower bound.

Let us now show that each yσ for σ ∈ Sn is an extreme point of C. Since C is invariant
under the Sn action, we may assume that σ is the identity. Suppose y = (1 − t)x + tz for
x, z ∈ C, and 0 < t < 1. Then, for all 1 ≤ i ≤ n,

k∑
i=1

yi = (1− t)
k∑
i=1

xi + t

k∑
i=1

zi ≤ (1− t)
k∑
i=1

x↓i + t

k∑
i=1

z↓i ≤
k∑
i=1

yi.

Thus equality holds throughout, and
∑k

i=1 xi =
∑k

i=1 x
↓
i ,

∑k
i=1 zi =

∑k
i=1 z

↓
i and

∑k
i=1 x

↓
i =∑k

i=1 z
↓
i =

∑k
i=1 yi. Thus

∑k
i=1 xi =

∑k
i=1 zi =

∑k
i=1 yi for all 1 ≤ k ≤ n ≤ k ≤ n. Starting

with k = 1, which yields x1 = z2 = y1, one proceeds inductively to show that xi = zi = yi
for all 1 ≤ i ≤ n.

We will prove that these are the only extreme points by induction on n. If n = 1, then
C(y) = {y}, and the only extreme point is just y itself. To perform the inductive step, we
will need a lemma on breaking up and reassembling the set C(y). Fix 1 ≤ k ≤ n, and write
any z ∈ Rn as (z′, z′′) ∈ Rk ×Rn−k. Define C ′ = C(y1, . . . , yk) and C ′′ = C(yk+1, . . . , yn) (if
k = n, then leave C ′′ := ∅).

Lemma. If z′ ∈ C ′ and z′′ ∈ C ′′, then z = (z′, z′′) ∈ C. Conversely, if z = (z′, z′′) ∈ C,
then z′ ∈ C ′.

Suppose additionally that
∑k

i=1 zi =
∑k

i=1 yi. Then z′′ ∈ C ′′. Moreover, if z ∈ C is
extreme, then z′ ∈ C ′ and z′′ ∈ C ′′ are extreme.

Proof. Suppose z′ ∈ C ′ and z′′ ∈ C ′′, and set z = (z′, z′′). Let 1 ≤ ` ≤ k and suppose
i1, . . . , i` are the indices of the ` largest elements of z. Suppose p of the indices are in
{1, . . . , k} and q = `− p of the are in {k + 1, . . . , n}. Then∑̀

j=1

zi` =
∑

i`∈{1,...,k}

zi` +
∑

i`∈{k+1,...,n}

zi`

=
∑

i`∈{1,...,k}

z′i` +
∑

i`∈{k+1,...,n}

z′′i`−p

≤
p∑
i=1

z′i
↓

+

q∑
j=1

z′′j
↓

≤
p∑
i=1

yi +

k+q∑
j=k+1

yj ≤
p+q=`∑
i=1

yi.

Similarly,
n∑
j=1

zj =

p∑
j=1

z′j +

q∑
j=1

z′′j =

p∑
j=1

yj +
k+1∑
j=k+1

yj =

p+q=`∑
j=1

yj.

Thus z ∈ C.
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Now suppose z ∈ C, and
∑k

i=1 zi =
∑k

i=1 yi. Split z = (z′, z′′) ∈ Rk ×Rn−k. Let us start
by showing that z′ ∈ C ′. Indeed, if 1 ≤ ` ≤ k and i1, . . . , i` are the indices of the ` largest
elements of z′, then ∑̀

i=1

z′i =
∑̀
i=1

zi ≤
∑̀
i=1

z↓i ≤
∑̀
i=1

yi.

If ` = k, then equality must hold by assumption. To show that z′′ ∈ C ′′, we need to show∑n−k
j=1 z

′′
j =

∑n−k
j=1 y

′′
j and if 1 ≤ ` ≤ n − k and i1, . . . , i` are the indices of the ` largest

elements of z′′, then ∑̀
j=1

z′′ij ≤
∑̀
j=1

yk+j.

For the second, if z ∈ C, then
k∑
j=1

zi +
∑̀
j=1

zij+k ≤
k∑
j=1

yj +
∑̀
j=k+1

yj =
k+∑̀
j=1

yj.

Since
∑k

j=1 zi =
∑k

j=1 yj, this implies that

∑̀
j=1

z′′i` =
∑̀
j=1

zi`+k ≤
k+∑̀

j=k+1

yj,

as desired. For the first, use the same trick to notice that
k∑
j=1

yj +
n−k∑
j=1

z′′j +
k∑
j=1

zi +
n−k∑
j=1

z′′j =
n∑
j=1

zj =
n∑
j=1

yj.

Finally, suppose z is extreme in C (still supposing
∑k

i=1 zi =
∑k

i=1 yi). Suppose z
′
1, z
′
2 ∈ C ′,

t ∈ (0, 1) and (1 − t)z′1 + tz′2 = z′. We need to show that z′1 = z′2 = z′. Set z1 = (z′1, z
′′),

z2 = (z′2, z
′′). We have shown that z′′ ∈ C ′′, and so by the first part of this lemma, z1, z2 ∈ C,

and by definition (1 − t)z1 + tz2 = z. Since z is extreme, z1 = z2 = z and so consequently,
z′1 = z′2 = z′. The same argument shows that z′′ is extreme. �

We continue with the inductive proof. Assume the claim for m < n. We prove it for n. Let
e be an extreme point of C. Since C is invariant under permutation, we may assume that
e = e↓. Let k is the smallest integer at least 1 for which

∑k
j=1 ej =

∑k
j=1 yj (by definition

this holds for k = n, so k is well-defined).
Write e = (e′, e′′), where e′ comprises the first k components and e′′ comprises the last

n− k components. By the lemma, e′ ∈ C ′ and e′′ ∈ C ′′ (C ′, C ′′ defined as in the lemma) are
both extreme. Since k ≥ 1, by induction e′′ has the form

(yσ(1)+k, . . . , yσ(n−k)+k)

(or k = n in which case there is no e′′), for some σ ∈ Sn−k. Since y = y↓ and e = e↓, we can
assume without loss of generality that σ is the identity. If we can show k = 1, then since e′
is extreme, by by induction e′ = (y1), and thus

e = y ⊆ {yσ : σ ∈ Sn}
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as desired.3
Suppose not, and k > 1. Then by definition of k, for 1 ≤ ` < k

(1)
∑̀
j=1

ej <
∑̀
j=1

yj.

For ε > 0 sufficiently small (which we choose later), define

e′
±

= (e1 ± ε, e2, . . . , ek−1, ek ∓ ε).
We show that e′± ∈ C ′. Now suppose 1 ≤ ` ≤ k and i1, . . . , i` are the indices of the ` largest
elements of e′±. We need to show that∑̀

j=1

e′
±
ij
≤

∑̀
j=1

yi,

with equality if ` = k (i.e. the sum runs from j = 1, . . . , k). If ` = k, then
k∑
j=1

e′
±
ij

=
k∑
j=1

le′
±
j =

k∑
j=1

e′j ± ε∓ ε =
k∑
j=1

yj.

If ` < k, then for ε sufficiently small, by (1)∑̀
j=1

e′
±
ij
≤

∑̀
j=1

e′ij + ε ≤
∑̀
i=1

e′i + ε <
∑̀
j=1

yj

Thus e′± ∈ C ′. Set e± = (e′±, e′′). Recall that e′′ ∈ C ′′, and so by the lemma, e± ∈ C.
By definition e = 1

2
e− + 1

2
e+, which contradicts extremeity. Thus k = 1 and the proof is

complete. �

2. Application to functional analysis

Now we can give an example application to functional analysis.

Theorem 2.1. Suppose A and B are compact positive operators on a Hilbert space, H.
Suppose that A ≤ B, or more generally that Tr(ΠA) ≤ Tr(ΠB) for any orthogonal projection
onto a finite-dimensional subspace. Then if ϕ is any non-negative convex non-decreasing
function on R such that Tr(ϕ(B)) <∞, then Tr(ϕ(A)) ≤ Tr(ϕ(B)).

This and similar theorems have important applications in the theory of the Schatten class,
`p(H), of operators A with Tr(|A|p) <∞. We prove this theorem in a few parts. First, notice
that if A ≤ B and Π is a projection onto a finite-dimensional subspace ofH with orthonormal
basis {e1, . . . , en}, then

Tr(ΠA) =
n∑
i=1

〈Aen, en〉 ≤
n∑
i=1

〈Ben, en〉 = Tr(ΠB),

so that the assumption A ≤ B really is a special case of the more general assumption. The
main tool we use is the following inequality, occasionally attributed to Ky Fan. If Σ ⊆ H is
finite-dimensional, then write ΠΣ for the orthogonal projection onto Σ.

3Recall that we are assuming e = e↓, so we did not expect e = yσ for any non-identity σ.
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Proposition 2.2. Suppose C is a positive self-adjoint operator on a Hilbert space, H, with
eigenvalues λ1 ≥ λ2 ≥ · · · . Then

max
dim(Σ)=k

Tr(ΠΣC) =
k∑
i=1

λi.

With this proposition, the proof of the theorem is easy.

Proof of theorem 2.1. If λ1 ≥ λ2 ≥ · · · and µ1 ≥ µ2 ≥ · · · are the eigenvalues of A and B,
respectively, then the hypotheses and the proposition give that for any k

k∑
i=1

λi ≤
k∑
i=1

µi.

Karamata’s inequality now yields the result that for any n
n∑
i=1

ϕ(λi) ≤
n∑
i=1

ϕ(µi).

Suppose e1, e2, . . . is an orthonormal basis of H consisting of eigenvectors for A, ordered so
that with Aei = λiei, then λi is non-increasing. Then taking limits, it follows that

Tr(ϕ(A)) =
∞∑
i=1

〈ϕ(A)ei, ei〉 =
∞∑
i=1

ϕ(λi) ≤
∞∑
i=1

ϕ(µi) = Tr(ϕ(B)).

�

Now we prove the proposition.

Proof of proposition 2.2. Suppose e1, e2, . . . is an orthonormal basis of H consisting of eigen-
vectors of C, ordered so that with Cei = λiei, λi is non-increasing. Then, with Σ =
span{e1, . . . , ek}, certainly

Tr(ΠΣC) =
k∑
i=1

λi.

To prove the proposition, we just need to show that if dim Σ = k is any other subspace, then
Tr(ΠΣC) ≤

∑k
i=1 λi. Write ai = ‖ΠΣei‖2 = 〈ΠΣei, ei〉. Then 0 ≤ ai ≤ 1. Expanding in the

basis e1, e2, . . .,

Tr(ΠΣC) =
∞∑
i=1

λiai =
k∑
i=1

λi +
k∑
i=1

λi(ai − 1) +
∞∑

i=k+1

λiai

≤
k∑
i=1

λi +
k∑
i=1

λk(ai − 1) +
∞∑

i=k+1

λkai

=
k∑
i=1

λi − kλk + λk

∞∑
i=1

ai.
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The manipulations with the infinite sums are justified since ΠΣC has finite rank, and is thus
trace class. Alternatively, one can just replace the ∞ with some large N in the computa-
tion, and take limits. Now, if f1, . . . , fk, fk+1, . . . is an orthonormal basis of H such that
{f1, . . . , fk} is an orthonormal basis of Σ, then

∞∑
i=1

ai =
∞∑
i=1

〈ΠΣei, ei〉 =
k∑
i=1

〈ΠΣfi, fi〉 = k.

Therefore,

Tr(ΠΣC) ≤
k∑
i=1

λi − kλk + kλk =
k∑
i=1

λi,

which is the desired inequality. �

Appendix A. Appendix

Theorem A.1 (Finite-dimensional Krein-Milman theorem). Let K ⊆ Rn be compact and
convex. Then K is the convex hull of its extreme points.

Proof. We use induction on n. If n = 1, K = [a, b] and the theorem is obvious. Assume
the theorem now for n − 1; we prove it for n. Let x ∈ K. We need to show that x is a
convex combination of extreme points in K. Fix any v with ‖v‖ = 1, and consider the line
s 7→ x + sv. Since K is compact and convex there exist finite minimal and maximal times,
s− ≤ 0 ≤ s+, for which x± := x+ s± ∈ K and x+ sv 6∈ K for s > s+ or s < s−. We we will
show that x± are both convex combinations of extreme points of K, and thus since x lies on
the line segment between x− and x+, it is a convex combination of x− and x+, and hence
also a convex combination of extreme points of K.

We focus on the case for x+. The case of x− is handled in the same way. We show that
there is some unit vector w ∈ Rn such that 〈x+, w〉 maximizes the functional ϕ = 〈•, w〉
over K. By definition, x+ + 1/n 6∈ K for all n ∈ N. In particular, we can separate x+ + 1/n
from K with a hyperplane, i.e. there exists a unit vector wn ∈ Rn such that

(2) 〈x+ + 1/n, wn〉 ≥ 〈z, wn〉
for all z ∈ K. Since the wn are bounded, we may extract a convergent subsequence wnk

→ w.
Taking limits in (2) yields

〈x+, w〉 ≥ 〈z, w〉
for all z ∈ K, i.e. x+ maximizes ϕ over K. Set a = 〈x+, w〉, and set

K ′ = (K ∩ ϕ−1(a))− x+ = (K − x+) ∩ ϕ−1(0).

Notice that K ′ is compact and convex, and contains 0. Since ϕ is a nonzero functional,
dim kerϕ = n − 1, and kerϕ is isomorphic to Rn−1 as a vector space.4 Identifying K ′ with
its image under this isomorphism, by induction every point in K ′ is a convex combination of
its extreme points. In particular 0 is a convex combination of the extreme points of K ′. We
will show that for every extreme point e ∈ K ′, e+ x+, which is in K, is an extreme point of
K. Thus if

0 = t1e1 + · · ·+ tkek

4Notice that notions of convexity and being an extreme point, etc., depend only on the vector-space
structure, so are carried through under the isomorphism.
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is a convex combination of extreme points in K ′, then
x+ = t1(e1 + x+) + · · ·+ tk(ek + x+)

is a convex combination of extreme points in K, which is what we wanted to show.
Suppose e ∈ K ′ is extreme, and e + x+ = (1 − t)z1 + tz2 for z1, z2 ∈ K and t ∈ (0, 1).

Recall that a = ϕ(x+) is the maximum of ϕ over K. Then
a = ϕ(e+ x+) = (1− t)ϕ(z1) + tϕ(z2) ≤ (1− t)a+ ta = a.

Thus equality must hold throughout, and ϕ(z1) = ϕ(z2) = a, and hence z1−x+, z2−x+ ∈ K ′.
Since e = (1−t)(z1−x+)+t(z2−x+) and e is extreme inK ′, this means z1−x+ = z2−x+ = e.
Thus e+ x+ is extreme in K, as desired. �
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